
Week 2 Lab problems
EEB 429
Bhaskar Kumawat

HW Doubts

A. Data-types
1. What is the data-type of the variables x, y, and z defined as below? (You don’t need to

run it in R)

x <- 42.0
y <- 42
z <- “42”

2. Define a variable “a” as below in a new R-script

a <- “9.999”

3. Convert the variable “a” to numeric, store it in a variable “b”, and then display it.
4. Convert the variable “b” to integer, store it in a variable “c”, and then display it.
5. Use the function round() on variable “b”, store it in a variable “d”, and then display it.
6. How does variable “d” differ from variable “c” (i.e., how does converting a numeric to

integer directly differ from rounding it using a function)?
Write the answer to parts 1 and 6, and submit your inputs and outputs for parts 2-5 to earn full
credit for this question.

B. Vectors and Matrices
1. Create a vector “v1” that is the number 4 repeated 7 times.
2. Create a vector “v2” that is a sequence from 1 to 20 with a step-size of 3.
3. Create a vector “v3” that consists of elements 8, 10, 11, 12, 13, 14, 6.
4. Create a matrix “A” with v1, v2, and v3 as its rows (and display it)
5. Create a matrix “B” with v1, v2, and v3 as its columns (and display it)
6. Add a new row with values 100, 200, and 300 to matrix “B” (and display it)
7. Print the dimensions of matrices A and B.

Submit your inputs and outputs for part 1-7 to earn full credit for this question.

C. Indexing (and plotting)
In a new R-script, do the following:
Vectors

1. Create a vector with the following elements: "L", "O", "W", "D", "E", "R", "G", "H", "I"
2. Index the vector (i.e., pick elements from it) to spell “HELLOWORLD” (in one line of

code.)

Matrix
3. Create a 3x3 matrix from the above vector using the matrix() function
4. Once again, index the matrix to spell “HELLOWORLD” in one line of code.

Hint: You can specify a “coordinate” in the matrix using c(x,y) and then bind all coordinates
together using rbind()

Data Frames
5. “mtcars” is a pre-loaded data-frame in R. Make sure you can see it when you execute

“mtcars”
6. Display the first column of this data-frame. (By number and not name)
7. Display the third row of this data-frame. (By number and not name)
8. Display the “gear” column of the data-frame (By name and not number)
9. Display the 3rd through 10th elements of the “cyl” column of the data-frame.
10. Use plot() command to plot the mpg of a car in the dataset against the weight (wt) of the

car. (You can use ?plot to see how the function works)

Lists
11. Create a list containing the above three objects with labels “v”, “m”, and “d”.
12. Display the first object in the list.
13. Display the object labeled “d” in the list.
14. Display the letter “H” from the matrix inside the list. (You can either access the matrix by

number or by label)

Submit the inputs and outputs for 1-14 to get full credit for this problem (you can just execute
the entire R-script and copy-paste the results from the console).

(Optional extra reading on indexing: https://csu-r.github.io/Module1/indexing.html)

https://csu-r.github.io/Module1/indexing.html

C. Creating data-frames
Consider the following data-table:
country cases population year

Afghanistan 745 19987 1999

Afghanistan 2666 20595 2000

Brazil 37737 172006 1999

Brazil 80488 174504 2000

To recreate this table in R as a data-frame, we can use one of three methods:
A. We can input it into a .csv file and import it into R.
B. We can recreate each column as a vector in R, and then create a data-frame from them.
C. We can create an empty data-frame, and then add the data row-by-row.

In a new R-script file:
1. Use method A to recreate the data-frame and display it in R (you can use Excel or

Google Sheets to input the data and save it as a .csv file).
2. Use method B to recreate the data-frame and display it in R. (you will have to use the

function data.frame() for this)
3. Use method C to recreate the data-frame and display it in R. This is a bit more

complicated and requires you to know the following commands.
Creating an empty data-frame

This creates an empty data-frame called “testdata” with two
columns named “name” and “birthyear”
testdata <- data.frame(name=character(), birthyear=integer())

Note how we need to specify the data-type stored in each column, R needs to know
what you’re going to store in each column beforehand!

Adding a new row to a data-frame

This adds the name “john” and birth-year “1956” to the
data-frame “testdata”
new_row <- data.frame(name=”john”, birthyear=1956)
testdata <- rbind(testdata,new_row)

Submit your inputs and outputs for part 1-3 to earn full credit for this question.

