Week 5 Lab problems

EEB 429
Bhaskar Kumawat

Note: You might find this R-markdown cheat sheet useful. Refer to this cheat sheet on equations in R-markdown for writing nice mathematical equations.

A. Using R-markdown

1. Create a new R-markdown file titled "LastnameFirstname_Lab5" with the author name as your name, and output as "html_document".
2. Create a level-1 (largest) header called "Week 5 Problems"
3. Below that, write your full name in bold lettering.
4. Below that, create a level-2 header (second largest) called "Problem A".
5. Recreate the following equation below the heading. (See equations cheat sheet above)

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

6. Start a new R code block below the equation (using ${ }^{\prime}{ }^{`}\{r\}<c o d e>{ }^{\prime}$ ')
7. Inside the code block, define a function called Gaussian that takes in three arguments, x , mean, and std. Code the function to calculate the value as defined in the equation above (where, $x=x$, mean $=\mu$, and $s t d=\sigma$). You might have to use the in-built R functions $\exp ()$ and $\operatorname{sqrt().}$
8. Below the code block, create a level-3 header called "Gaussian plot".
9. Below the header, create another R code block with the echo=FALSE parameter.
10. Inside the code block, define two variables mu (with value 2) and stdev (with value 1).
11. After that, create a vector called xvals that goes from -1 to 5 in steps of 0.01 . (Using seq)
12. Then, call the function Gaussian with the arguments xvals, mu, and stdev and store the result in a variable called yvals.
13. Plot xvals (x-axis) against yvals (y-axis) using the plot function.

B. Using apply on a data-frame

In the same R-markdown file as the above problem:

1. Create a level-2 header called "Problem B" below the answers to the previous question.
2. Start a new R code block below the equation (using ${ }^{`}$ ' $\{r\}$ <code> ${ }^{`}$ ')
3. Use the apply function on the mtcars dataframe to get the mean value in each column of the dataframe and store these in a variable called all_means.
4. Use the apply function on the mtcars dataframe to get the standard deviation of values in each column of the dataframe and store these in a variable called all_stds.
5. Use the apply function on the mtcars dataframe to get the minimum value in each column of the dataframe and store these in a variable called all_mins.
6. Use the apply function on the mtcars dataframe to get the maximum value in each column of the dataframe and store these in a variable called all_maxs.
7. Index the above four vectors to obtain the minimum, maximum, mean value, and standard deviation of the wt column.

Submit the entire R-Markdown file AND the generated HTML file on Canvas for full credit.

